A topological isomorphism invariant for certain AF algebras

نویسنده

  • Ryan J. Zerr
چکیده

For certain AF algebras, a topological space is described which provides an isomorphism invariant for the algebras in this class. These AF algebras can be described in graphical terms by virtue of the existence of a certain type of Bratteli diagram, and the orderpreserving automorphisms of the corresponding AF algebra’s dimension group are then studied by utilizing this graph. This will also provide information about the automorphism groups of the corresponding AF algebras.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Classification of Two-component Cuntz-krieger Algebras

Cuntz-Krieger algebras with exactly one non-trivial closed ideal are classiied up to stable isomorphism by the Cuntz invariant. The proof relies on RRrdam's classiication of simple Cuntz-Krieger algebras up to stable isomorphism and the author's classiication of two-component reducible topological Markov chains up to ow equivalence.

متن کامل

Af -algebras and Topology of 3-manifolds

We consider 3-dimensional manifolds, which are surface bundles over the circle. It is shown that to every infinite order (pseudo-Anosov) monodromy φ of the bundle, one can assign an AF -algebra Aφ (an operator algebra). It is proved that the assignment is functorial, i.e. each monodromy φ, conjugate to φ, maps to an AF -algebra Aφ′ , which is stably isomorphic to Aφ. This approach gives new top...

متن کامل

1 1 M ar 2 00 9 AF - algebras and topology of 3 - manifolds

We consider 3-dimensional manifolds, which are surface bundles over the circle. It is shown that to every infinite order (pseudo-Anosov) monodromy φ of the bundle, one can assign an AF -algebra Aφ (an operator algebra). It is proved that the assignment is functorial, i.e. each monodromy φ, conjugate to φ, maps to an AF -algebra Aφ′ , which is stably isomorphic to Aφ. This approach gives new top...

متن کامل

Strong Topological Regularity and Weak Regularity of Banach Algebras

In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...

متن کامل

Various topological forms of Von Neumann regularity in Banach algebras

We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005